\qquad

DUE: Friday October 6th @ 8 am

1. Assign the R or S configuration to the stereogenic carbon in each of the following compounds:

R configuration

2. Label all stereogenic carbons in the molecules below with a *, AND determine which compounds are chiral.

- 1 stereogenic center
- no stereogenic centers
- plane of symmetry
- 2 stereogenic centers
- plane of symmetry
stereogenic centers

- 4 stereogenic centers
chiral
achiral

3. When a cyclohexane is drawn in a chair conformation, it might at first appear to be chiral since there is no obvious plane of symmetry. When redrawn in the planar form (as in question 2, above), however, it is much easier to determine whether a plane of symmetry exists. For the two cyclohexanes below, redraw them in their planar form and determine whether they are chiral or not:

achiral

chiral

- 2 stereogenic centers

4. Which of the following compounds are meso (may be more than one)?

5. Label the stereogenic centers with a ${ }^{*}$ and calculate the total POSSIBLE number of stereoisomers that could be drawn for the molecules below:

- 4 stereogenic centers
$2^{4}=16$ possible stereoisomers

vitamin E
- 3 stereogenic centers
$2^{3}=8$ possible stereoisomers

6. Provide as complete an IUPAC name as possible for the following compound (include R/S as necessary).

basic name: 1-chloro-2-fluoro-4methylhexane

determine the stereochemical configuration at carbon 2
complete IUPAC name:
(2R,4S)-1-chloro-2-fluoro-
4-methylhexane
7. Draw the Fisher projection of the enantiomer and a diastereomer for the compound below (label each). Label each as chiral or achiral.

enantiomer
NOTE: both stereogenic centers are inverted so
they are mirror image stereoisomers

OR

diastereomers
NOTE: not all stereogenic centers are inverted (only one of the two possible), so these are non-mirror image stereoisomers
8. Assign the R or S configuration for the compounds below.

S configuration

enantiomer! $=\mathrm{R}$

S configuration

enantiomer! $=\mathrm{R}$
9. (S)-2-bromodecane has the following properties: boiling point, $124^{\circ} \mathrm{C}$; density, $1.051 \mathrm{~g} / \mathrm{ml}$.

Which of the following statements MUST be true given this information (may be more than one)?
A. (R)-2-bromodecane rotates a plane of polarized light in the levorotatory direction. provided to determine
(B) (R)-2-bromodecane has a density of $1.051 \mathrm{~g} / \mathrm{ml}$ enantiomers have identical physical properties
C. (R)-2-bromodecane cannot be a meso compound only a single stereogenic carbon is present, a meso compound requires 2 or
D. A $50 / 50$ mixture of (S)- and (R)-2-bromodecane is optically inactive racemic mixtures are optically inactive (they do not rotate a plane of polarized light in a polarimeter)
10. Jimmy insists there are 8 different stereoisomers that can be drawn for 1,2,3-trichlorocyclopropane and that 4 are chiral. Draw all of the different stereoisomers below (be careful to not duplicate!) and indicate which ones are chiral. Based on your finding, do you agree or disagree with Jimmy?

Jimmy

Sorry Jimmy! there are only $\mathbf{2}$ different stereoisomers possible (all others are duplicates). Plus, neither one is chiral. Stereoisomer A has no stereogenic carbons, and, while B has 2 stereogenic carbons, there is a plane of symmetry present (i.e. a meso compound)

