Problem Set Chapter 7

Organic Chemistry for Life Sciences: CHM 223 Section A

Name_

DUE in class: Wednesday November 15 @ 8am

1. Rank the following substrates according to their exected rate of reaction with a nucleophile in an S_N^2 reaction from fastest >>> slowest.

2. Rank the following substrates according to their exected rate of reaction with a nucleophile in an S_N1 reaction from fastest >>> slowest.

3. Draw the product and determine the configuration (R or S) for the starting material AND the product resulting from the $S_N 2$ reaction below:

4. Which one of the following statements is true about the substrate 3-bromo-3-methylhexane?

- A. It can react via both the S_N1 and S_N2 substitution reaction mechanisms
- B. It cannot react by either the S_N1 or S_N2 substitution reaction mechanisms
- C. It can react via the $S_N 1$ but not the $S_N 2$ substitution reaction mechanism
- D. It can react via the $S_N 2$ but not the $S_N 1$ substitution reaction mechanism

5. The S_N^2 reaction below was conducted with only ONE equivalent of LiOCH₃ (i.e. only sufficient LiOCH₃ to substitute at *a single* position). What is the predicted major product?

6. The name of the product formed from the following $S_N 2$ reaction is (HINT: redraw the chair conformation as a planar 6-membered ring):

- A. trans-1-bromo-3-isopropylcyclohexane
- B. cis-1-bromo-3-isopropylcyclohexane
- C. trans-1-isopropyl-3-bromocyclohexane
- D. cis-1-isopropyl-3-bromocyclohexane

7. The electrostatic potential map for CH_3I (see I, below) shows much less deep red and blue colors than the electrostatic potential map for CH_3F (see II below). This is because:

more δ - on C

8. Predict whether the following reaction is likely to proceed by an $S_N 1$ or $S_N 2$ reaction and *justify your answer* (i.e., consider the nature of the nucleophile, nature of the substrate, nature of the leaving group, and the solvent):

9. Draw the individual steps (including curved arrows!!) for the reaction mechanism to explain the following S_N1 reaction:

10. Jimmy says the following reaction will proceed via an S_N^2 mechanism because "OTs is an excellent leaving group and CH₃OH is a strong nucleophile". Do you agree with Jimmy? Why or why not? What major final product is expected to form from this reaction (HINT: consider possible rearrangements)?

