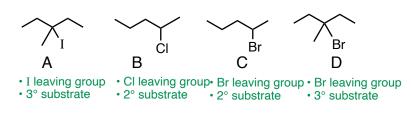

Organic Chemistry for Life Sciences: CHM 223 Section A

Name

DUE in class: Monday November 15 @ 8am

1. Rank the following substrates according to their exected rate of reaction with a nucleophile in an $S_N 2$ = methyl generally, order of reactivity towards S_N2⁴ **reaction** from fastest >>> slowest.

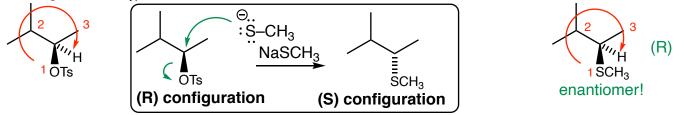


 $> 1^{\circ} > 2^{\circ} >>> 3^{\circ}$ (essentially unreactive) • so, B and D (both 1°) should have a greater reaction rate than A (2°) which will be much much faster than C (3°) • D is 1°, but has much greater steric hindrance adjacent to the carbon that is being attacked than

AB The greater steric hindrance will slow the rate relative to B.

$$(B > D > A >>> C)$$

2. Rank the following substrates according to their exected rate of reaction with a nucleophile in an $S_{N}1$ **reaction** from fastest >>> slowest.


• generally, the order of reactivity towards $S_{N}1$ = 3° >2 ° >>> 1 ° and methyl (both of which are essentially unreactive)

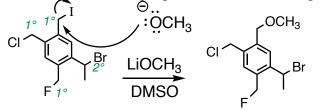
• So A and D (both 3°) will be have a greater rate than B and C (both 2°)

· I is a better leaving group than Br which will result in a faster reaction (i.e., A > D)

· Between the two 2° substrates, Br is a better leaving group than Cl (i.e., C > B)

3. Draw the product and determine the configuration (R or S) for the starting material AND the product resulting from the S_N^2 reaction below:

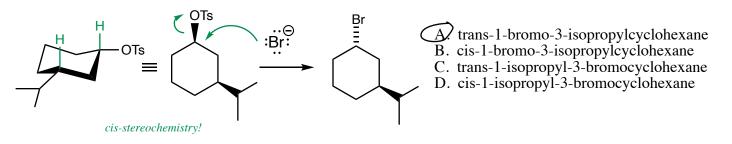
4. Which one of the following statements is true about the substrate 3-bromo-3-methylhexane?

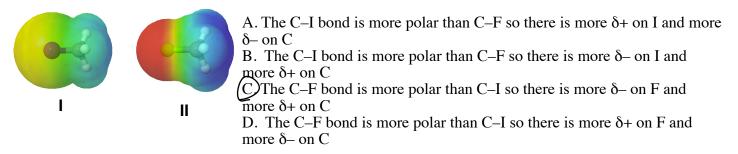

A. It can react via both the $S_N 1$ and $S_N 2$ substitution reaction mechanisms

B. It can react by neither the $\hat{S}_N 1$ nor $\hat{S}_N 2$ substitution reaction mechanisms

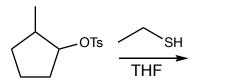
O It can react via the S_N1 but not the S_N^2 substitution reaction mechanism D. It can react via the S_N2 but not the S_N1 substitution reaction mechanism

Sr 3° alkyl bromide substrate

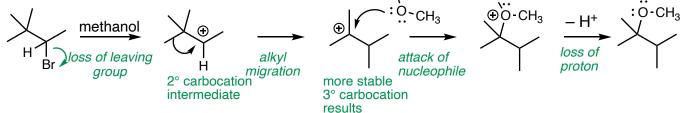

5. The $S_N 2$ reaction below was conducted with only ONE equivalent of LiOCH₃ (i.e. only sufficient LiOCH₃) to substitute at *a single* position). What is the predicted major product?


- 1° positions will generally be more reactive than 2° position in an S_N 2 reaction

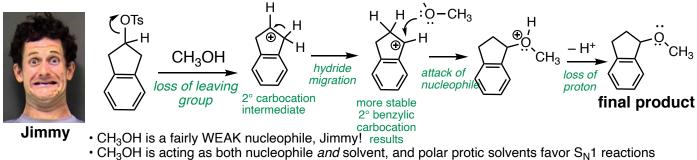
· of the 1° positions, F is unreactive as a leaving group and I is more reactive than CI


6. The name of the product formed from the following $S_N 2$ reaction is:

7. The electrostatic potential map for CH_3I (see I, below) shows much less deep red and blue colors than the electrostatic potential map for CH_3F (see II below). This is because:



8. Predict whether the following reaction is likely to proceed by an S_N1 or S_N2 reaction and *justify your answer* (i.e., consider the nature of the nucleophile, nature of the substrate, nature of the leaving group, and the solvent)



- OTs is a great leaving group for both SN1 and SN2
- 2° substrate can proceed by either SN1 or SN2
- THF is a polar aprotic solvent, which favors SN2
- thiols are strong nucleophiles which favors SN2
- \bullet all of the factors suggest an $S_{\rm N}2$ reaction will prevail

9. Draw the individual steps (including curved arrows!!) for the reaction mechanism to explain the following $S_N 1$ reaction: H H

10. Jimmy says the following reaction will proceed via an S_N^2 mechanism because "OTs is an excellent leaving group and CH₃OH is a strong nucleophile". Do you agree with Jimmy? Why or why not? What major final product is expected to form from this reaction (HINT: consider possible rearrangements)?

• the preferred mechanism would therefore be $S_N 1$ and NOT $S_N 2$. Sorry Jimmy!!