Chapter 9: Addition Reactions of Alkenes [Sections: 9.1-9.8]

- $pi(\pi)$ bond is weak (compared to sigma (σ) bond)
- clouds of electron density above and below the plane defined by the atoms of the molecule
- alkenes are electron-rich, and therefore good electron donors
- susceptible to reaction with electrophiles

Relative reactivities of alkenes

flashbackto carbocations:

electron density of the pi bond increases with increasing substitution about the double bond

rate of reaction with electrophiles

- remember: earlier we determined that increasing substitution about the double bond increased stability!
- thus, if we have a set of isomeric alkenes, the most stable isomer is also be the most reactive towards electrophiles!

• as with ANY reaction that involves carbocation intermediates, be aware that rearrangements of the intermediate carbocations to more stable carbocations might occur!

Problems: 1 (Alkenes + Reagent A), 2

• this is considered to be a "stereospecific" reaction since a single stereoisomer results although two or more might be conceivably formed

Problems: I(Alkenes + Reagent C)

- halogenations are addition reactions
- generally exothermic since two fairly strong C-X bonds are formed at the expense of a broken pi bond and a weak X-X bond
- Br_2 and Cl_2 engage in reactivity. F_2 is TOO reactive and I_2 is too unreactive
- NOTE: HX reactions and X_2 reactions are completely different!

equivalent Br₂

DISUB MORE REACTIVE THAN MONU SUB

Observed:

- bromonium ions are very strained intermediates due to angle strain and the factthat a positive charge is forced onto an electronegative atom
- bromonium ions are very reactive and seek to eliminate the characteristics that contribute to the strain reaction with Br—to formthe 1,2-dibromide relieves these sources of strain
- the net result is addition of the two bromine atoms onto either face of the original pi bond

• such addition is referred to as "anti" addition
• the reaction is therefore stereospecific

Bry Cl₂

Cl₂

Cl₂

