
Product of SN1 reaction?

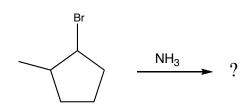
Product of SN1 reaction?

Product of SN1 reaction?

Product of SN1 reaction?

Rearrangement occurs

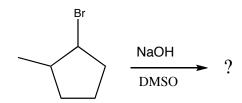
Product of SN2 reaction?


Inversion of configuration

Product of SN2 reaction?

Does the reaction proceed by SN1 or SN2? What is the product?

SN1 3° substrate, polar protic solvent


Does the reaction proceed by SN1 or SN2?

SN1

2° substrate, polar protic solvent

Does the reaction proceed by SN1 or SN2?

SN2

2° substrate, polar aprotic solvent

Which of the following is the stronger nucleophile?

$$H_2S$$
 or H_2O

H_2S

Which of the following is the stronger nucleophile? NH ₃ or H ₂ O	NH ₃
Which of the following is the stronger nucleophile? NH ₃ or PH ₃	PH_3
Which of the following is the stronger nucleophile? CH ₃ O or CH ₂ CH ₃ O	⊖ CH ₃ O
Which of the following is the stronger nucleophile? CH ₃ CH ₂ O or CH ₃ CH ₂ OH	CH₃CH₂O [⊖]
Characteristics of an SN2 reaction mechanism	A. good leaving group B. strong nucleophile C. methyl, 1° or 2° substrate D. bimolecular transition state E. inversion of configuration F. transference of optical activity

Characteristics of an SN1 reaction mechanism	A. good leaving group B. typically weak nucleophile C. 2° or 3° substrate D. unimolecular transition state E. carbocation intermediates that may rearrange F. loss of optical activity (racemization)
Some examples of nonpolar solvents	hexane, benzene, CCl₄
Some examples of polar protic solvents	methanol, acetic acid, water
Some examples of polar aprotic solvents	acetone, DMSO, ether, CH ₂ Cl ₂
Definition of a substitution reaction	One atom or group of atoms in the product replaces another atom or group of atoms in the starting material

Definition of an addition reaction	One or more atoms or groups of atoms are added to the starting substrate
Definition of an elimination reaction	One or more atoms or groups of atoms are removed from the starting substrate
Definition of a rearrangement reaction	An atom or group of atoms moves from one position to another
Compounds with good leaving groups: R-I, R-Br, R-Cl, R-OTs, protonated R-OH group	Compounds with poor leaving groups: R-F, R-OH, R-NH ₂
Unsaturated compounds with good leaving groups: Benzylic and allylic halides and tosylates	Unsaturated compounds with poor leaving groups: Halobenzenes and tosyl benzenes vinyl halides and vinyl tosylates