Solutions

17.1.
a)

b)

c)

d)

17.2.

17.3.

\xrightarrow{c} Bond Length

17.4.

a)

The conjugated diene will liberate the least heat because it is the most stable of the three compounds.
b)

This isolated diene will liberate more heat than the other isolated diene, because the π bonds in this compound are not highly substituted (one π bond is monosubstituted and the other is disubstituted). In the other isolated diene, the π bonds are disubstituted and trisubstituted (and therefore more stable).
17.5. In the compound below, all three π bonds are conjugated:

17.6.

17.7.
a)

b)

c)

d)

e)

f)

17.8. The first diene can be protonated either at C 1 or at C 4 . Each of these pathways produces a resonance stabilized carbocation. And each of these carbocations can be attacked in two positions, giving rise to four possible products. In contrast, the second diene yields the same carbocation regardless of whether protonation occurs at C 1 or at C4. This resonance-stabilized carbocation can be attacked in two positions, giving rise to two products.

17.9.

17.10.
a)

b)

c)

17.11. In this case, the π bond in the 1,2 -adduct is more substituted than the π bond in the 1,4 -adduct (trisubstituted rather than disubstituted). As a result, the 1,2 -adduct predominates at either low temperature or high temperature.
17.12. In this case, 1,2 -addition and 1,4 -addition yield the same product.

17.13.
a)

b)

17.14.
a)

b)

c)

d)

e)

f)

g)

h)

i)

17.15.

17.16.

17.17. The $2 E, 4 E$ isomer is expected to react more rapidly as a diene in a Diels-Alder reaction, because it can readily adopt an s-trans conformation.

(2E,4E)-hexadiene
In contrast, the $2 Z, 4 Z$ isomer is expected to react more slowly as a diene in a Diels-Alder reaction, because it cannot readily adopt an s-trans conformation, as a result of steric hinderance.

17.18.
Reactivity in Diels-Alder reactions

locked in an | $s-c i s$ |
| :---: |
| conformation |

locked in an
$s-$ trans
conformation

17.19.
a)

b)

c)

d)

e)

f)

17.20. We first consider the HOMO of one molecule of butadiene and the LUMO of another molecule of butadiene. The phases of these MOs do not align, so a thermal reaction is symmetry-forbidden. However, if one molecule is photochemically excited, the HOMO and LUMO of that molecule are redefined. The phases of the frontier orbitals will align under these conditions, so the reaction is expected to occur photochemically.
17.21.
a)

b)

c)

17.22.
a)

b)

c)

17.23.
a)

b)

17.24.
a) a meso compound
b) a pair of enantiomers
c) a pair of enantiomers
17.25.
a)

b)

17.26.
a)

b) $[3,3]$ Sigmatropic rearrangement
c) The ring strain associated with the three-membered ring is alleviated. The reverse process would involve forming a high-energy, three-membered ring. The equilibrium disfavors the reverse process.
17.27.
a)

b)

c)

d)

17.28.

17.29.
a)

Base $=217$
Additional double bonds $=0$
Auxochromic alkyl groups $=+25$
Exocyclic double bond $=+5$
$\underline{\text { Homoannular diene }=0}$
Total $=247 \mathrm{~nm}$
b)

Base $=217$
Additional double bonds $=+30$
Auxochromic alkyl groups $=+25$
Exocyclic double bond $=+5$
Homoannular diene $=0$
Total $=277 \mathrm{~nm}$
c)

$$
\text { Base }=217
$$

Additional double bonds $=+30$
Auxochromic alkyl groups $=+30$
Exocyclic double bonds $=+15$
Homoannular diene $=0$
Total $=292 \mathrm{~nm}$
d)

$$
\text { Base }=217
$$

Additional double bonds $=+30$
Auxochromic alkyl groups $=+35$
Exocyclic double bonds $=+5$
$\underline{\text { Homoannular diene }=+39}$
Total $=326 \mathrm{~nm}$

17.30

17.31.
a) Blue.
b) Red-Orange.
c) Blue-violet.
17.32.
a)

b)

c)

d)

e)

17.33.

17.34.
a) These drawings represent two different conformations of the same compound: the s cis conformation and the s-trans conformation. These two conformations are in equilibrium at room temperature.
b) These drawings represent two different compounds: (Z)-1,3,5-hexatriene and (E)-$1,3,5$-hexatriene. These compounds are diastereomers and can be isolated from one another.
c) These drawings represent two different conformations of the same compound: the s cis conformation and the s-trans conformation. These two conformations are in equilibrium at room temperature.
17.35.

17.36.

17.37.

17.38.

17.39. An increase in temperature allowed the system to reach equilibrium concentrations, which are determined by the relative stability of each product. Under these conditions, the 1,4 -adducts predominate. Once at equilibrium, lowering the temperature will not cause a decrease in the concentration of the 1,4adducts.
17.40.
a) The tert-butyl groups provide significant steric hinderance that prevents the compound from adopting an s-cis conformation.
b) This diene is not conjugated.
c) The methyl groups provide significant steric hinderance that prevents the compound from adopting an s-cis conformation.
d) This diene cannot adopt an s-cis conformation
17.41.

17.42. The π bonds in 1,2 -butadiene are not conjugated, and $\lambda_{\max }$ is therefore lower than 217 nm . In fact, it is below 200 nm , which is beyond the range used by most UVVIS spectrometers.
17.43.
a)

b)

c)

d)

e)

f)

17.44.
a)

b)

c)

d)

e)

f)

g)

h)

17.45.

17.46.

17.47.

17.48. The two ends of the conjugated system are much farther apart in a sevenmembered ring than they are in a five-membered ring.
17.49.

17.50.
Increasing $\lambda_{\max }$
17.51. Two of the π bonds are homoannular in this compound, which adds +39 nm according to Woodward-Fieser rules.

17.52.

$$
\text { Base }=217
$$

Additional double bonds $=+60$
Auxochromic alkyl groups $=+35$
Exocyclic double bonds $=+5$
$\underline{\text { Homoannular diene }=+39}$
Total $=356 \mathrm{~nm}$
17.53. Each of these transformations can be explained with a $[1,5]$ sigmatropic rearrangement:

17.54. This transformation can be explained with a $[1,5]$ sigmatropic rearrangement:

17.55.

17.56.
a)

b)

c)

d)

17.57. The compound on the right has a π bond in conjugation with the aromatic ring, while the compound on the left does not. Therefore, the compound on the right side of the equilibrium is expected to be more stable, and the equilibrium will favor the compound that is lower in energy.
17.58.

17.59.
a)

b)

c)

17.60.
a) α-Terpinene has two double bonds.
b)

α-terpinene

c)

Base $=217$
Additional double bonds $=0$
Auxochromic alkyl groups $=+20$
Exocyclic double bonds $=0$
$\underline{\text { Homoannular diene }=+39}$
Total $=276 \mathrm{~nm}$
17.61.

17.62.

17.63. In each case, the non-conjugated isomer will be higher in energy:
a)

b)

17.64. Nitroethylene should be more reactive than ethylene in a Diels-Alder reaction, because the nitro group is electron-withdrawing, via resonance:

17.65.

17.66. The diene is electron-rich in one specific location, as seen in the second resonance structure below:

The dienophile is electron-poor in one specific location, as seen in the third resonance structure below:

These two compounds will join in such a way that the electron-poor center lines up with the electron-rich center:

17.67.

17.68.

17.69. The nitrogen atom in divinyl amine is $s p^{2}$ hybridized. The lone pair is delocalized, and joins the two neighboring π bonds into one conjugated system. As such, the compound absorbs light above 200 nm (UV light). In contrast, 1,4-pentadiene has two isolated double bonds and therefore does not absorb UV light in the region between 200 and 400 nm .

