Chapter 25: Amino Acids, Peptides and Proteins

[Sections: 25.1-25.8]

1. alpha (α) amino acids

L-amino acids

L-Glyceraldehyde

- amino acids contain an amino group at the α-position relative to the carboxylic acid group
- there are 20 naturally-occurring amino acids that vary by the nature of the R group
- 19 of the amino acids are chiral because of the stereogenic α carbon with the exception of glycine $(R=H)$
- the R groups can be roughly categorized into 4 types: nonpolar, polar, acidic and basic
- humans can synthesize 10 of the amino acids fromscratch, the other 10 (essential amino acids) must be derived fromdiet

2. Properties of α-amino acids

- $p H>I P$, the CO2- group remains deprotonated, and the $\mathrm{NH}_{3}{ }^{+}$group becomes deprotonated so that the amino acid is overall negatively charged
neutral @ isoelectric point
(IP $=\mathrm{pH}$ of maximum zwitterion content)
- $\mathrm{pH}<I$, the CO2- group becomes protonated, and the $\mathrm{NH}_{3}{ }^{+}$group remains protonated so that the amino acid is overall positively charged
A. What form predominates for lysine $(\mathrm{IP}=9.74)$ in a solution of $\mathrm{pH}=6$?
B. An amino acid is predominantly negatively charged in a solution of $\mathrm{pH}=8.2$. What must be true about its IP?

The 20 Common Naturally-Occurring α-Amino Acids found in Proteins

* by the name denotes essential amino acids amino acids with non-polar side chains

Glycine Gly or G $\mathrm{IP}=5.97$

Alanine
Ala or A
$\mathrm{IP}=6.01$

Valine*
Val or V
$\mathrm{IP}=5.96$

Leucine*
Leu or L
$\mathrm{IP}=5.98$

Isoleucine*
Ile or I $\mathrm{IP}=6.02$

Methionine*
Met or M
$\mathrm{IP}=5.74$

Proline
Pro or P
$\mathrm{IP}=6.30$

Phenylalanine*
Phe or F
$\mathrm{IP}=5.48$

Tryptophan*
Trp or W $\mathrm{IP}=5.89$
amino acids with polar side chains

Asparagine
Asn or N
$\mathrm{IP}=5.41$

Threonine*
Thr or T $\mathrm{IP}=5.60$

Glutamine
Gln or Q
$\mathrm{IP}=5.65$

Tyrosine
Tyr or Y
$\mathrm{IP}=5.66$

Serine
Ser or S
$\mathrm{IP}=5.68$

Cysteine
Cys or C
IP = 5.07
amino acids with polar and acidic side chains

Aspartic Acid
Asp or D
$\mathrm{IP}=2.77$

Glutamic Acid
Glu or E
IP =3.22
amino acids with polar and basic side chains

Arginine
Arg or R
$\mathrm{IP}=10.76$

Histidine*
His or H
$\mathrm{IP}=7.59$

Lysine*
Lys or K
$\mathrm{IP}=9.74$
3. Analysis of amino acids: electrophoresis

		predominant form	migrates towards
c			
a			
$\Theta_{\mathrm{t}}^{\mathrm{t}} \mathrm{h}$	Lysine $\mathrm{pI}=9.74$		
o			
d	Alanine $\mathrm{pI}=6.02$		
e	Glutamic acid $\mathrm{pI}=3.22$		
	Tyrosine $\mathrm{pI}=5.66$		

- all 20 amino acids have a unique pI
- electrophoresis exploits this difference and the resulting differences in behavior in response to an electric fieldto separate amino acid mixtures foranalysis
- in cases where pI's are particularly close (e.g., glycine [MW=75] pI=5.97, leucine [MW =131] pI= 5.98) differences in molecular weight also have an impact on ratelextent of movement

5. Making peptides

Problem 1: need to convert OH of carboxylic acid group into a leaving group

Problem 2: need to limit reaction to one of the $\mathrm{CO}_{2} \mathrm{H}$ groups and one of the NH_{2} groups
To make a dipeptide from Alanine and Glycine:

- in order to ensure that only one $\mathrm{CO}_{2} \mathrm{H}$ group and one NH_{2} group react, the other groups must be protected from reaction

- using these methods and judicious protection/deprotection, dipeptides, tripeptides, tetra, penta, etc. (i.e., polypeptides) may be constructed sequentially
- proteins are polypeptides with ~50 AA residues. Proteins on average have 300 AA residues but can incorporate as many as 30,000
- the entire process has been mechanized via the Merrifield synthesis method that makes use of polymer supports

Determining the primary structure of a peptide

A. Short-chain polypeptides

- the primary structure of a peptide or protein is the sequence of amino acids (from N-terminal residue to C-terminal residue) that make up the peptide chain

Leucine enkephalin
found in the brain; interacts with the same receptor as morphine and helps to control pain

- complete simultaneous cleavage of all of the peptide bonds is possible
- all sequencing information is lost

- sequential removal of one AA at a time taking advantage of the free NH_{2} group allows for identification of the N-terminal residue specifically
- is successful for determining sequence of ~ 50 AA's
- similar selective C-terminal residue analysis is also possible

B. Long-chain polypeptides

- the primary structure of long chain proteins can be accomplished via partial hydrolysis of the polypeptide into shorter chains (<50 AAs in length) that can be sequenced as above
\bullet the individual short chains then need to be stitched together in a logical manner to provide the full sequence

unknown polypeptide	Phe-Gln-Asn Asn-Cys		Cys-Pro-Arg
complete \downarrow hydrolysis	Arg-Gly	Cys-Tyr	Tyr-Phe-Gln

1 Tyr, 2 Cys, 1 Phe, 1 Pro
1 Gln, 1 Gly, 1 Arg, 1 Asn

[^0]
7. Secondary Structures of Proteins

- Protein secondary structure: general three-dimensional formsof local segments of proteins (e.g., alpha helices and beta sheets)
- right-handed
- ~3.6 AA per turn
- NH of each AA is hydrogen bound to the $\mathrm{C}=\mathrm{O} 4$ units away
- R groups point outward

- two or more protein chains line up side by side
- hydrogen bonding between NH and $C=O$ of neighboring strand
- alkyl groups are generally positioned above and below the sheet

8. Tertiary Structure of Proteins

- the protein's overall geometric shape
- non-regular but not random
- most stable arrangement for that sequence of AA residues
- hydrogen bonding and $S-S$ [disulfide bonds between cysteine residues] play the major role in structural stability
- generally, the structure of enzymes have polar groups directed towards the outside of the structure, and nonpolar groups directed towards the interior which allows forwater solubility
- change in solvent, pH , or temperature can alter the shape of the protein (unfolding), which is called "denaturization" and is generally irreversible

- the tertiary shape of the protein determines its behavior and specificity by creating "pockets" or "active sites" within the structure that recognize specific types of compound

Example: human cholinesterases in complex with tacrine

- part of a study to finddrugs to aid in the battle against Alzheimer's disease
- tacrine was one of the firstdrugs to be foundbeneficial in the treatment of Alzheimer's disease, although it has been discontinued since 2013 due to conerns over safety
- human cholinesterase (PDB ID 4BDS) is a protein (enzyme) with 529 AA residues

tacrine

[^0]: - polypeptides greater in length than ~ 50 AAs $=$ proteins

