4n pi electrons = ?	What is the Huckel number of pi electrons for an anti-aromatic molecule?
Essential requirements for Aromaticity?	 cyclic array of sp2 hybridized orbitals 4n+2 π electrons planar
Essential requirements for anti-aromaticity?	 cyclic array of sp2 hybridized orbitals 4n π electrons planar
Diamagnetic ring current	Deshielding effect of aromatic protons
Paramagnetic ring current	Shielding effect of anti-aromatic protons

	1
[4n + 2] pi electrons = ?	What is the Huckel number of pi electrons for an aromatic molecule?
Aromatic, anti-aromatic or non-aromatic?	What is the structure of the AROMATIC molecule BENZENE?
Aromatic, anti-aromatic or non- aromatic?	What is the structure of the ANTI-AROMATIC molecule CYCLOBUTADIENE?
Aromatic, anti-aromatic or non-aromatic?	What is the structure of the NON-AROMATIC molecule CYCLOOCTATETRAENE?
Are the lone pair nitrogens part of the pi system?	NO! the lone pair on the nitrogen is NOT involved in the pi system because the N is part of the double bond already

Are the lone pair nitrogens part of the pi system?	YES! The nitrogen atom must adopt SP2 hybridization to place the lone pair in the pi system to achieve 6pi electrons, which is a Huckel number of pi electrons required for aromaticity