CHM 224

Test 1
Chapters 17, 18, 19

1. From the series of compounds below, label the most and least stable isomer:

A

B

C

D

MOST STABLE:
LEAST STABLE:
2. Which one of the following compounds is expected to undergo an $S_{N} 1$ reaction the fastest and which one the slowest?
A. 1-bromo-2-pentene
B. 4-bromo-1-pentene

fastest:

C. 3-bromo-2-pentene
D. 5-bromo-2-pentene

slowest:

3. Draw all reasonable contributing resonance forms for the carbocation below using curved arrows and appropriate conventions:

4. What is the major product expected for the following reaction? Show your work:

5. Which of the following are major products of the following reaction?

A

B

C

D

E
6. Which one of the following statements correctly describes aromatic molecules?
A. they typically exhibit non-alternating bond lengths and undergo substitution reactions
B. they typically exhibit alternating bond lengths undergo substitution reactions
C. they typically exhibit alternating bond lengths and undergo addition reactions
D. they typically exhibit non-alternating bond lengths and undergo addition reactions
7. Answer the questions regarding the structure of the compound provided below:
A. What is the number of pi electrons?

B. Is there a value for " n " that satisfies the Huckel rule? $\mathrm{n}=$
C. Is there an even or odd number of pairs of electrons?
D. Is this compound predicted to be aromatic?
E. The type of ring current exhibited in NMR spectroscopy would be:
8. Which of the following correctly ranks the order in which the compounds below will undergo an $\mathrm{S}_{\mathrm{N}} 1$ reaction (from fastest to slowest):

A. I $>$ II $>$ III
B. I $>$ III $>$ II
C. II $>$ I $>$ III
D. II $>$ III $>$ I
E. III $>$ I $>$ II
F. III $>$ II $>$ I
9. Which of the following compounds are predicted to exhibit aromaticity?

A

B

C

D
10. Cyclobutadiene is a rare example of an anti-aromatic compound because:

11. Answer the two questions below based on the structure provided:

i. Do you predict the compound to be aromatic or antiaromatic? Clearly describe how you account for pi electrons, including lone pairs.
ii.The predicted heat of hydrogenation for the compound above is $240 \mathrm{~kJ} / \mathrm{mol}$. The actual (experimental) heat of hydrogenation was determined to be $350 \mathrm{~kJ} / \mathrm{mol}$. Does this information support your answer above (use specific data, not just yes or no).
12. Draw the structure of ortho-bromophenol
13. Provide an acceptable name for the following compound:

14. Provide the reagents necessary to complete the following reaction:

15. Methylphenyl sulfide (below) reacts fifty times faster than benzene towards $\mathrm{Br}_{2}, \mathrm{FeBr}_{3}$. Given this information, what would you predict to be the major product(s) of the following reaction?

16. Provide a synthesis of the following compound starting with benzene.

17. Which one of the following substituents activates the reaction of the benzene ring with electrophiles to the greatest extent?
A. OH
B. CN
C. CH_{3}
D. $\mathrm{SO}_{3} \mathrm{H}$
E. NO_{2}
18. What is the expected major product of the following reaction:

AlCl_{3}
19. Provide a synthesis for the following compound starting with benzene.

Bonus! ($1 \mathbf{~ p t) . ~ W h a t ~ i s ~ t h e ~ n a m e ~ o f ~ t h e ~ f o l l o w i n g ~ c o m p o u n d ? ~}$

The Periodic Table of the Elements

1 Hydrogn hdogen																	
3 $\mathbf{L i}$ Lilium 6.941	$\begin{gathered} 4 \\ \hline \begin{array}{c} \text { Be.plium } \\ \text { Ben } \\ \hline .012182 \end{array} \\ \hline \end{gathered}$											$\begin{array}{\|c} \hline 5 \\ \mathbf{B} \\ \hline \text { Bron } \\ 10.811 \end{array}$	$\begin{gathered} 6 \\ \mathbf{c} \\ \mathbf{C} \text { caton } \\ 12.0107 \end{gathered}$	$\left.\begin{gathered} 7 \\ \mathbf{N} \\ \mathbf{N} \\ \text { Ningen } \\ 14.0667 \end{gathered} \right\rvert\,$	$\begin{gathered} 8 \\ \mathbf{c} \\ \text { Oxyen } \\ \text { 1.5.9994 } \end{gathered}$	$\|$9 \mathbf{F} Fluorine 18.998403 17	$\begin{gathered} \text { c.009 } \\ 1 \\ \text { Ne } \\ \text { Nen } \\ 20.1797 \end{gathered}$
$\begin{gathered} 11 \\ \hline \text { Sal } \\ \text { soidim } \\ \hline 20 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ \begin{array}{c} \text { Magesum } \\ 24030 \end{array} \end{gathered}$												$\begin{gathered} 14 \\ \mathbf{S} \\ \mathbf{S i l i c o n} \\ 28.0855 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ \left.\begin{array}{c} \text { Phosphoros } \\ 30 \end{array}\right) \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ \text { Sulur } \\ 32.066 \\ \hline \end{gathered}$		$\begin{gathered} \substack{\text { Argn } \\ \text { aron } \\ \hline} \end{gathered}$
$\begin{gathered} 19 \\ \hline \begin{array}{c} \text { Peassium } \\ \text { Ben } \\ 39.0983 \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & 20 \\ & \text { Ca } \\ & \text { Catiom } \\ & 4.0 .07 \end{aligned}$		$\begin{gathered} 22 \\ \hline \text { Ti } \\ \text { Thaium } \\ 47.867 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 23 \\ \mathbf{V} \\ \begin{array}{c} \text { vanaium } \\ \text { so. } \end{array} \\ \hline \end{array}$	$\begin{gathered} 24 \\ \hline \begin{array}{c} \text { Chromiun } \\ \text { sing } \end{array} \\ \hline 19961 \end{gathered}$				$\begin{gathered} 28 \\ \mathbf{N} \\ \mathbf{N i v i c l} \\ \text { sicel } \\ 58.6934 \end{gathered}$			$\begin{gathered} 31 \\ \text { Ga } \\ \text { Calium } \\ \text { caltrin } \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ \text { Cemanium } \end{gathered}$	$\begin{gathered} 33 \\ \text { Assenic } \\ 7 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{c} \\ \substack{\text { Selenium } \\ \text { fre } \\ \hline} \\ \hline \end{gathered}$		$\begin{gathered} 36 \\ \mathbf{c} \text { Krypun } \\ \text { Kry } \end{gathered}$
$\begin{array}{\|c} \hline 37 \\ \hline \begin{array}{c} \text { Rubiuium } \\ \text { Rub } \\ 85.4678 \end{array} \end{array}$	$\begin{array}{\|c} \hline 38 \\ \hline \text { Sronium } \\ 87.62 \\ \hline \end{array}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ \text { y.trium } \\ 88.90585 \end{gathered}$		$\begin{gathered} 41 \\ \text { Nb } \\ \text { Nivibum } \\ \text { gion } \end{gathered}$	$\begin{gathered} 42 \\ \substack{\text { Madoden } \\ \text { Mo }} \end{gathered}$	$\begin{gathered} 43 \\ \text { Tce } \\ \substack{\text { ceachecium } \\ 0.08)} \end{gathered}$	$\begin{gathered} 44 \\ \begin{array}{c} \text { Runceium } \\ \text { Rution } \\ 101.07 \end{array} \end{gathered}$		$\begin{aligned} & 46 \\ & \hline \begin{array}{c} \text { Pepdaium } \\ \text { Pata } \\ 106.42 \end{array} \end{aligned}$	$\begin{gathered} 47 \\ \substack{\text { AgIu } \\ \text { 1076 }} \end{gathered}$	$\begin{aligned} & 48 \\ & \text { Cd } \end{aligned}$	$\begin{array}{\|c} \hline 49 \\ \text { In } \\ \text { Indium } \\ 114.818 \end{array}$	$\begin{gathered} 50 \\ \hline \text { rin } \\ \text { Sn } \\ 118.710 \end{gathered}$	$\begin{gathered} 51 \\ \hline \begin{array}{c} \text { Antiony } \\ \text { An } \\ 121.760 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ \hline \begin{array}{c} \text { Treluium } \\ \text { The } \\ \text { 127.60 } \end{array} \\ \hline \end{gathered}$	$\underset{\substack{\text { Iodine } \\ 126.90447}}{53}$	$\begin{gathered} 54 \\ \substack{\text { Xenen } \\ \text { Nen }} \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ \text { Cesium } \\ 132.90545 \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ \text { Batiun } \\ \hline 1874 \end{gathered}$	$\begin{gathered} 57 \\ \mathbf{L a} \\ \substack{\text { Lentanum } \\ 138.055} \end{gathered}$	$\begin{gathered} 72 \\ \text { Hef } \\ \text { Heffium } \\ 178,49 \end{gathered}$		$\begin{array}{\|c\|c\|} \hline 74 \\ \mathbf{W} \\ \substack{\text { Tinsesen } \\ 188.84} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 75 \\ \hline \text { Reve } \\ \hline \\ \text { Renium } \\ 186.207 \\ \hline \end{array}$		$\begin{gathered} 77 \\ \mathbf{c} \\ \begin{array}{c} \text { Ifidium } \\ 1922.217 \end{array} \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline 79 \\ \mathbf{A u} \\ \text { Gudod } \\ 196.96655 \\ \hline \end{array}$					$\begin{gathered} 84 \\ \begin{array}{c} 84 \\ \text { Po } \\ \text { Polonium } \\ \text { (209) } \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & 85 \\ & \text { At } \\ & \text { Anstaine } \\ & \text { (120) } \end{aligned}$	$\begin{aligned} & 86 \\ & \text { Rn } \\ & \text { Rund } \\ & \text { Ratan } \end{aligned}$
	$\begin{aligned} & 88 \\ & \text { Ra } \\ & \text { Ratium } \\ & \text { Ratan } \end{aligned}$	$\begin{gathered} 89 \\ \begin{array}{c} \text { Actinium } \\ (227) \end{array} \end{gathered}$	$\begin{array}{\|l\|} \hline 104 \\ \text { Runf } \\ \text { Ruteratium } \end{array}$				$\begin{aligned} & 108 \\ & \text { Has } \\ & \text { Hasium } \\ & \text { n2060 } \end{aligned}$		110 （269）	$\begin{aligned} & 111 \\ & (272) \end{aligned}$	112 （277）	113	114				

58 Ce Cerium 140.116	59 $\mathbf{P r}$ Praseoymium 140.90765$\|$		$\begin{array}{\|c} 61 \\ \mathbf{c} \\ \text { Promentium } \\ \text { Prom } \\ (1455) \end{array}$	$\begin{gathered} 62 \\ \substack{\text { S.amariun } \\ \text { San } \\ \text { 150.36 }} \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ \substack{\text { Eurpopiun } \\ 151.964} \end{gathered}$		$\begin{gathered} 65 \\ \text { Tb } \\ \text { Terbium } \\ \text { 158.92534 } \end{gathered}$	$\begin{array}{\|c} 66 \\ \text { Dy } \\ \text { Dypyrysum } \\ \hline 162.50 \\ \hline \end{array}$		$\begin{gathered} \hline 68 \\ \left.\hline \begin{array}{c} \text { Erbrum } \\ 167.26 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土\right) \\ \hline \end{gathered}$		$\begin{gathered} 70 \\ \mathbf{y} \\ \mathbf{y} \\ \text { Ytetribu } \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ \text { Luteium } \\ \hline \end{gathered}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Therium 232.0381		${ }_{\substack{\text { Uranium } \\ 238.0289}}$	$\begin{aligned} & \text { Neppriuiu } \\ & \hline(237) \end{aligned}$	Plutonium (244)	$\underset{\substack{\text { Americium } \\(243)}}{ }$	$\underset{\substack{\text { Curium } \\(247)}}{ }$	Berkelium （247）	Californium (251)	$\begin{aligned} & \text { Einsteinium } \\ & (252) \end{aligned}$	${ }_{\substack{\text { Fernium } \\ \text {（257）}}}$	Mendelevium (258)	Nobelium (259)	$\underset{\substack{\text { Lavencoium } \\(262)}}{ }$

1995 IUPAC masses and Approved Names from http：／／www．chem．qmw．ac．uk／iupac／AtWt／
masses for 107－111 from C\＆EN，March 13，1995，p． 35
112 from http：／／www．gsi．de／z112e．html

