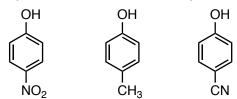
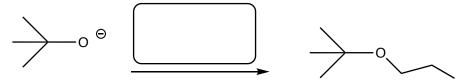

CHM 224 Test 2 Chapters 13, 14, organometallics, 20


- 1. Answer the following 3 questions:
 - A. Brandy is 50% alcohol. What is its proof?
 - B. This alcohol can be created by heating wood chips:
 - C. This alcohol is referred to as "rubbing alcohol":

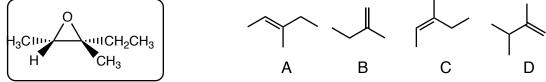
2. The three compounds below have nearly identical molecular weights. Arrange them according to their expected boiling points from highest >>> lowest.

NAME:

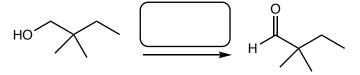
3. Match the pKa values with the compounds provided: pKa's = 7.2, 8.0, 10.3

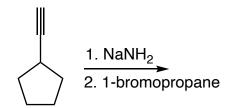

4. What is the expected major product of the following reaction?

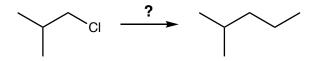
5. Which of the following compounds is expected to *fail to react* with KMnO₄ (may be more than one)?


- A. 1-methylcyclopentanol
- B. 2-methyl-3-hexanol
- C. 4-ethyl-4-heptanol
- D. 3-bromo-1-butanol
- 6. Provide the IUPAC name for the following compound:

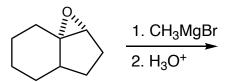
OH Br


- 7. Which ONE of the following statements is true?
 - A. ethers are generally water soluble, flammable, and reactive with strong bases
 - B. ethers are generally water insoluble, not flammable, and reactive with strong acids
 - C. ethers are generally water soluble, flammable, and reactive with strong bases
 - D. ethers are generally water insoluble, flammable, and reactive with strong acids
- 8. In the box, provide the compound required to complete the Williamson ether synthesis below:

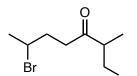

9. Which one of the following alkenes will form the epoxide below upon treatment with a peroxyacid?


- 10. Answer the following 3 questions:
 - A. the solvent commonly referred to as "ether" has what structure?
 - B. ether was first developed as an anesthetic for what type of medical practice?
 - C. peroxides are formed when ethers react with what compound?
- 11. In the box, provide the reagent that is best suited for the following reaction:

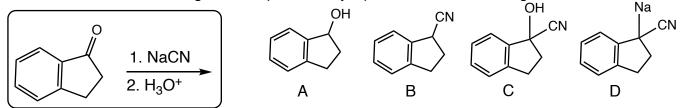
12. What is the product of the following reaction sequence?



13. What organometallic reagent would be best suited to complete the following reaction (may be more than one)?



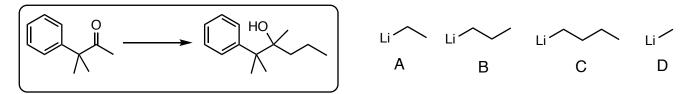
- A. CH₃CH₂MgBr
- B. CH₃MgBr
- C. (CH₃)₂CuLi
- D. (CH₃CH₂)₂CuLi


14. What is the expected product of the following reaction sequence (show stereochemistry):

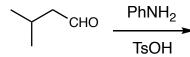
15. What is the IUPAC name of the following compound?

16. What one of the following is the expected major product of the following reaction:

17. What set of reagents must be added to complete the following reaction:



A. HOCH₂OH, TsOH B. HOCH₂OH, KOH C. HOCH₂CH₂OH, KOH D. HOCH₂CH₂OH, TsOH E. HOCH₂CH₂CH₂OH, KOH F. HOCH₂CH₂CH₂OH, TsOH


18. Which one of the following statements properly describes why aldehydes are generally more reactive than ketones towards nucleophiles?

- A. because aldehydes are more electrophilic and less sterically hindered
- B. because aldehydes are less electrophilic and less sterically hindered
- C. because aldehydes are more electrophilic and more sterically hindered
- D. because aldehydesy are less electrophilic and more sterically hindered

19. Addition of which alkyllithium compound, followed by H_3O_+ , is required to complete the following reaction?

20. Draw the product expected from the following reaction:

The Periodic Table of the Elements

1																	2
Н																	He
Hydrogen 1.00794																	Helium 4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	Ο	F	Ne
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
Sodium 22.989770	Magnesium 24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938049	Iron 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs Cesium	Ba Barium	La	Hf Hafnium	Ta Tantalum	W	Re Rhenium	Os Osmium	Ir Iridium	Pt Platinum	Au Gold	Hg	Tl Thallium	Pb Lead	Bi Bismuth	Po Polonium	At	Rn
132.90545	137.327	Lanthanum 138.9055	178.49	180.9479	Tungsten 183.84	186.207	190.23	192.217	195.078	196.96655	Mercury 200.59	204.3833	207.2	208.98038	(209)	(210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr Francium	Ra Radium	Ac	Rf Rutherfordium	Db Dubnium	Sg Seaborgium	Bh Bohrium	Hs Hassium	Mt Meitnerium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
				50	50	(0)	(1	(0)	(2)	()	(5		(7	(0	(0)	70	71
				58 C	59 D	60	61 D	62 S	63 E	64	65 Th	66 D	67	68 E	69 T	70 XI	71
				Ce Cerium	Pr Praseodymium	Nd Neodymium	Pm Promethium	Sm Samarium	Eu Europium	Gadolinium	Tb Terbium	Dy Dysprosium	Ho Holmium	Er Erbium	Tm Thulium	Yb Ytterbium	Lu Lutetium
				140.116 90	140.90765	144.24	(145)	150.36 94	151.964 95	157.25 96	158.92534	162.50 98	164.93032	167.26	168.93421	173.04	174.967
				90 Th	91 Pa	92	93 Nn	94 Pu			97 Bk	98 Cf	99 F a	100 Em	101 Md	102 No	103 I m
				I N Thorium	Pa Protactinium	U Uranium	Np Neptunium	Pu Plutonium	Am Americium	Cm Curium	DK Berkelium	Californium	Es Einsteinium	Fm Fermium	Md Mendelevium	No Nobelium	Lr Lawrencium
				232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

1995 IUPAC masses and Approved Names from http://www.chem.qmw.ac.uk/iupac/AtWt/ masses for 107-111 from C&EN, March 13, 1995, p. 35 112 from http://www.gsi.de/z112e.html