CHM 224

NAME:
Test 2
Chapters 13, 14, organometallics, 20

1. Answer the following 3 questions:
A. Brandy is 80 proof. What is its percent alcohol?
B. This alcohol has been used as a fuel in race cars:
C. The alcohol found in beer and wines is:
2. The three compounds below have nearly identical molecular weights. Arrange them according to their expected boiling points from highest >>> lowest.

A

B

C
3. Match the pKa values with the compounds provided: pKa 's $=8.0,10.1,10.3$

4. What is the expected major product of the following reaction?

5. Which of the following compounds is expected to undergo reaction with KMnO_{4} (may be more than one)?
A. 1-methylcyclopentanol
B. 2-methyl-3-hexanol
C. 4-ethyl-4-heptanol
D. 3-bromo-1-butanol
6. Provide the IUPAC name for the following compound:

7. Which ONE of the following statements is true?
A. ethers are generally water soluble, flammable, and reactive with strong bases
B. ethers are generally water insoluble, not flammable, and reactive with strong acids
C. ethers are generally water soluble, flammable, and reactive with strong bases
D. ethers are generally water insoluble, flammable, and reactive with strong acids
8. In the box, provide the compound required to complete the Williamson ether synthesis below:

9. Which one of the following alkenes will form the epoxide below upon treatment with a peroxyacid?

A

C

D
10. Answer the following 3 questions:
A. the solvent commonly referred to as "ether" has what structure?
B. ether was first developed as an anesthetic for what type of medical practice?
C. peroxides are formed when ethers react with what compound?
11. In the box, provide the reagent that is best suited for the following reaction:

12. What is the product of the following reaction sequence?

$\xrightarrow[\text { 2. 2-bromopropane }]{\text { 1. } \mathrm{NaNH}_{2}}$
13. What organometallic reagent would be best suited to complete the following reaction (may be more than one)?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$

B. $\mathrm{CH}_{3} \mathrm{MgBr}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CuLi}$
D. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CuLi}$
14. What is the expected product of the following reaction sequence (show stereochemistry):

15. What is the IUPAC name of the following compound?

16. What one of the following is the expected major product of the following reaction:

A

B

C

D
17. What set of reagents must be added to complete the following reaction:

A. $\mathrm{HOCH}_{2} \mathrm{OH}, \mathrm{TsOH}$
B. $\mathrm{HOCH}_{2} \mathrm{OH}, \mathrm{KOH}$
C. $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{KOH}$
D. $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{TsOH}$
E. $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{KOH}$
F. $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{TsOH}$
18. Which one of the following statements properly describes why ketones are generally less reactive than aldehydes towards nucleophiles?
A. because ketones are more electrophilic and less sterically hindered
B. because ketones are less electrophilic and less sterically hindered
C. because ketones are more electrophilic and more sterically hindered
D. because ketones are less electrophilic and more sterically hindered
19. Addition of which alkyllithium compound, followed by $\mathrm{H}_{3} \mathrm{O}+$, is required to complete the following reaction?

20. Draw the product expected from the following reaction:

The Periodic Table of the Elements

1 Hydrogn hdogen																	
3 $\mathbf{L i}$ Lilium 6.941	$\begin{gathered} 4 \\ \hline \begin{array}{c} \text { Be.plium } \\ \text { Ben } \\ \hline .012182 \end{array} \\ \hline \end{gathered}$											$\begin{array}{\|c} \hline 5 \\ \mathbf{B} \\ \hline \text { Bron } \\ 10.811 \end{array}$	$\begin{gathered} 6 \\ \mathbf{c} \\ \mathbf{C} \text { caton } \\ 12.0107 \end{gathered}$	$\left.\begin{gathered} 7 \\ \mathbf{N} \\ \mathbf{N} \\ \text { Ningen } \\ 14.0667 \end{gathered} \right\rvert\,$	$\begin{gathered} 8 \\ \mathbf{c} \\ \text { Oxyen } \\ \text { 1.5.9994 } \end{gathered}$	$\|$9 \mathbf{F} Fluorine 18.998403 17	$\begin{gathered} \text { c.009 } \\ 1 \\ \text { Ne } \\ \text { Nen } \\ 20.1797 \end{gathered}$
$\begin{gathered} 11 \\ \hline \text { Sal } \\ \text { soidim } \\ \hline 20 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ \begin{array}{c} \text { Magesum } \\ 24030 \end{array} \end{gathered}$												$\begin{gathered} 14 \\ \mathbf{S} \\ \mathbf{S i l i c o n} \\ 28.0855 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ \left.\begin{array}{c} \text { Phosphoros } \\ 30 \end{array}\right) \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ \text { Sulur } \\ 32.066 \\ \hline \end{gathered}$		$\begin{gathered} \substack{\text { Argn } \\ \text { aron } \\ \hline} \end{gathered}$
$\begin{gathered} 19 \\ \hline \begin{array}{c} \text { Peassium } \\ \text { Ben } \\ 39.0983 \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & 20 \\ & \text { Ca } \\ & \text { Catiom } \\ & 4.0 .07 \end{aligned}$		$\begin{gathered} 22 \\ \hline \text { Ti } \\ \text { Thaium } \\ 47.867 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 23 \\ \mathbf{V} \\ \begin{array}{c} \text { vanaium } \\ \text { so. } \end{array} \\ \hline \end{array}$	$\begin{gathered} 24 \\ \hline \begin{array}{c} \text { Chromiun } \\ \text { sing } \end{array} \\ \hline 19961 \end{gathered}$				$\begin{gathered} 28 \\ \mathbf{N} \\ \mathbf{N i v i c l} \\ \text { sicel } \\ 58.6934 \end{gathered}$			$\begin{gathered} 31 \\ \text { Ga } \\ \text { Calium } \\ \text { caltrin } \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ \text { Cemanium } \end{gathered}$	$\begin{gathered} 33 \\ \text { Assenic } \\ 7 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{c} \\ \substack{\text { Selenium } \\ \text { fre } \\ \hline} \\ \hline \end{gathered}$		$\begin{gathered} 36 \\ \mathbf{c} \text { Krypun } \\ \text { Kry } \end{gathered}$
$\begin{array}{\|c} \hline 37 \\ \hline \begin{array}{c} \text { Rubiuium } \\ \text { Rub } \\ 85.4678 \end{array} \end{array}$	$\begin{array}{\|c} \hline 38 \\ \hline \text { Sronium } \\ 87.62 \\ \hline \end{array}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ \text { y.trium } \\ 88.90585 \end{gathered}$		$\begin{gathered} 41 \\ \text { Nb } \\ \text { Nivibum } \\ \text { gion } \end{gathered}$	$\begin{gathered} 42 \\ \substack{\text { Madoden } \\ \text { Mo }} \end{gathered}$	$\begin{gathered} 43 \\ \text { Tce } \\ \substack{\text { ceachecium } \\ 0.08)} \end{gathered}$	$\begin{gathered} 44 \\ \begin{array}{c} \text { Runceium } \\ \text { Rution } \\ 101.07 \end{array} \end{gathered}$		$\begin{aligned} & 46 \\ & \hline \begin{array}{c} \text { Pepdaium } \\ \text { Pata } \\ 106.42 \end{array} \end{aligned}$	$\begin{gathered} 47 \\ \substack{\text { AgIu } \\ \text { 1076 }} \end{gathered}$	$\begin{aligned} & 48 \\ & \text { Cd } \end{aligned}$	$\begin{array}{\|c} \hline 49 \\ \text { In } \\ \text { Indium } \\ 114.818 \end{array}$	$\begin{gathered} 50 \\ \hline \text { rin } \\ \text { Sn } \\ 118.710 \end{gathered}$	$\begin{gathered} 51 \\ \hline \begin{array}{c} \text { Antiony } \\ \text { An } \\ 121.760 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ \hline \begin{array}{c} \text { Treluium } \\ \text { The } \\ \text { 127.60 } \end{array} \\ \hline \end{gathered}$	$\underset{\substack{\text { Iodine } \\ 126.90447}}{53}$	$\begin{gathered} 54 \\ \substack{\text { Xenen } \\ \text { Nen }} \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ \text { Cesium } \\ 132.90545 \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ \text { Batiun } \\ \hline 1874 \end{gathered}$	$\begin{gathered} 57 \\ \mathbf{L a} \\ \substack{\text { Lentanum } \\ 138.055} \end{gathered}$	$\begin{gathered} 72 \\ \text { Hef } \\ \text { Heffium } \\ 178,49 \end{gathered}$		$\begin{array}{\|c\|c\|} \hline 74 \\ \mathbf{W} \\ \substack{\text { Tinsesen } \\ 188.84} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 75 \\ \hline \text { Reve } \\ \hline \\ \text { Renium } \\ 186.207 \\ \hline \end{array}$		$\begin{gathered} 77 \\ \mathbf{c} \\ \begin{array}{c} \text { Ifidium } \\ 1922.217 \end{array} \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline 79 \\ \mathbf{A u} \\ \text { Gudod } \\ 196.96655 \\ \hline \end{array}$					$\begin{gathered} 84 \\ \begin{array}{c} 84 \\ \text { Po } \\ \text { Polonium } \\ \text { (209) } \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & 85 \\ & \text { At } \\ & \text { Anstaine } \\ & \text { (120) } \end{aligned}$	$\begin{aligned} & 86 \\ & \text { Rn } \\ & \text { Rund } \\ & \text { Ratan } \end{aligned}$
	$\begin{aligned} & 88 \\ & \text { Ra } \\ & \text { Ratium } \\ & \text { Ratan } \end{aligned}$	$\begin{gathered} 89 \\ \begin{array}{c} \text { Actinium } \\ (227) \end{array} \end{gathered}$	$\begin{array}{\|l\|} \hline 104 \\ \text { Runf } \\ \text { Ruteratium } \end{array}$				$\begin{aligned} & 108 \\ & \text { Has } \\ & \text { Hasium } \\ & \text { n2060 } \end{aligned}$		110 （269）	$\begin{aligned} & 111 \\ & (272) \end{aligned}$	112 （277）	113	114				

58 Ce Cerium 140.116	59 $\mathbf{P r}$ Praseoymium 140.90765$\|$		$\begin{array}{\|c} 61 \\ \mathbf{c} \\ \text { Promentium } \\ \text { Prom } \\ (1455) \end{array}$	$\begin{gathered} 62 \\ \substack{\text { S.amariun } \\ \text { San } \\ \text { 150.36 }} \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ \substack{\text { Eurpopiun } \\ 151.964} \end{gathered}$		$\begin{gathered} 65 \\ \text { Tb } \\ \text { Terbium } \\ \text { 158.92534 } \end{gathered}$	$\begin{array}{\|c} 66 \\ \text { Dy } \\ \text { Dypyrysum } \\ \hline 162.50 \\ \hline \end{array}$		$\begin{gathered} \hline 68 \\ \left.\hline \begin{array}{c} \text { Erbrum } \\ 167.26 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土\right) \\ \hline \end{gathered}$		$\begin{gathered} 70 \\ \mathbf{y} \\ \mathbf{y} \\ \text { Ytetribu } \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ \text { Luteium } \\ \hline \end{gathered}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Therium 232.0381		${ }_{\substack{\text { Uranium } \\ 238.0289}}$	$\begin{aligned} & \text { Neppriuiu } \\ & \hline(237) \end{aligned}$	Plutonium (244)	$\underset{\substack{\text { Americium } \\(243)}}{ }$	$\underset{\substack{\text { Curium } \\(247)}}{ }$	Berkelium （247）	Californium (251)	$\begin{aligned} & \text { Einsteinium } \\ & (252) \end{aligned}$	${ }_{\substack{\text { Fernium } \\ \text {（257）}}}$	Mendelevium (258)	Nobelium (259)	$\underset{\substack{\text { Lavencoium } \\(262)}}{ }$

1995 IUPAC masses and Approved Names from http：／／www．chem．qmw．ac．uk／iupac／AtWt／
masses for 107－111 from C\＆EN，March 13，1995，p． 35
112 from http：／／www．gsi．de／z112e．html

